Relationship of Chronic Histologic Prostatic Inflammation in Biopsy Specimens With Serum Isoform \([-2]\)proPSA (p2PSA), \(\%p2PSA\), and Prostate Health Index in Men With a Total Prostate-specific Antigen of 4-10 ng/mL and Normal Digital Rectal Examination

Massimo Lazzeri, Alberto Abrate, Giovanni Lughezzani, Giulio Maria Gadda, Massimo Freschi, Francesco Mistretta, Giuliana Lista, Nicola Fossati, Alessandro Larcher, Ella Kinzikeeva, Nicolòmaria Buffi, Vincenzo Dell’Acqua, Vittorio Bini, Francesco Montorsi, and Giorgio Guazzoni

OBJECTIVE

To investigate the relationship between serum \([-2]\)proPSA (p2PSA) and derivatives with chronic histologic prostatic inflammation (CHPI) in men undergoing prostate biopsy for suspected prostate cancer (PCa).

METHODS

This nested case-control study resulted from an observational prospective trial for the definition of sensibility, specificity, and accuracy of p2PSA, \(\%p2PSA\), and Beckman Coulter Prostate Health Index (PHI), in men undergoing prostate biopsy, with a total prostate-specific antigen (PSA) of 4-10 ng/mL and normal digital rectal examination. CHPI was the outcome of interest and defined as the presence of moderate to large infiltration of lymphomononuclear cells with interstitial and/or glandular disruption in absence of PCa. p2PSA, \(\%p2PSA\), and PHI were considered the index tests and compared with the established biomarker reference standard tests: tPSA, fPSA, \(\%fPSA\).

RESULTS

Of 267 patients subjected to prostate biopsy, 73 (27.3%) patients were diagnosed with CHPI. Comparing CHPI with PCa patients, \(\%p2PSA\) and PHI were found to be significantly lower, whereas fPSA and \(\%fPSA\) were significantly higher. \(\%p2PSA\) and PHI were the most accurate predictors of CHPI at biopsy, significantly outperforming tPSA, fPSA, and \(\%fPSA\). On the contrary, no significant differences were found in PSA, p2PSA, and derivatives between CHPI and benign prostatic hyperplasia (BPH) patients.

CONCLUSION

Our findings showed that p2PSA, \(\%p2PSA\), and PHI values might discriminate PCa from CHPI or BPH, but not CHPI from BPH, in men with a total PSA 4-10 ng/mL and normal digital rectal examination. p2PSA isoform and its derivatives could be useful in clinical decision making to avoid unnecessary biopsies in patients with CHPI and elevated tPSA value.

S

ince its introduction in clinical practice in the early 1990s, prostate-specific antigen (PSA) has been widely used for early prostate cancer (PCa) detection. However, there are many conditions limiting the specificity of PSA testing for PCa. In fact, serum PSA levels might increase as a result of benign conditions, such as chronic prostatitis or benign prostatic hyperplasia (BPH). Moreover, PSA levels are also affected by biologic variability, which might be related to differences in androgen levels, prostate manipulation, or ejaculation. Finally, alterations in PSA levels might be related to sample handling, laboratory processing, or assay standardization.

Thus, nowadays up to two-thirds of patients who undergo a prostate biopsy will have a negative histologic result. Acute and chronic inflammations are one of the
most common causes of increase in serum PSA levels. Therefore, the development of novel markers capable of accurately distinguishing between inflammation and PCa could definitely be of pivotal importance to better indicate the need of a prostate biopsy.

A recent European multicenter observational study demonstrated that [-2]proPSA (p2PSA), a serum isoform of PSA, and its derivatives, namely p2PSA over fPSA (%p2PSA) and the Hybritech Prostate Health Index (PHI), might improve discrimination between men with and without PCAs at initial biopsy, potentially lowering the rate of unnecessary prostate biopsies. In this study, we tested the hypothesis that p2PSA and its derivatives (%p2PSA and PHI) might discriminate between PCa and chronic histologic prostatic inflammation (CHPI) in patients with a PSA between 4 and 10 ng/mL and a negative digital rectal examination (DRE), thus avoiding unnecessary prostate biopsies in these individuals.

MATERIALS AND METHODS

Study Population

The analysis consisted of a nested case-control study from a large monocentric study aimed to define the sensibility, specificity, and accuracy of p2PSA, %p2PSA ([p2PSA/pg/mL]/[fPSA ng/mL x 1000]), and Beckman Coulter PHI ([-2]proPSA/fPSA x √fPSA) in predicting PCa. The hospital ethics committee approved the study (Protocol N. 2PROPSA/13.03.2010: Title: “Specificity, sensitivity and accuracy of [-2]proPSA for the diagnosis of prostate cancer in patients who are candidates for a prostatic biopsy”), and all patients signed written informed consent.

The study included patients undergoing ambulatory initial prostate biopsy for suspected PCa, with a total PSA of 4-10 ng/mL and a normal DRE, in the period from October 2010 to October 2011.

Exclusion criteria were the following: patients with bacterial acute prostatitis in the 3 months before biopsy, patients subjected to previous endoscopic surgery of the prostate, patients subjected to previous prostate biopsy, or patients being treated with dutasteride or finasteride were excluded. Furthermore, patients with chronic renal failure, marked blood protein alterations (plasma normal range 6-8 g/100 mL), hemophiliacs, or patients with acute prostatitis in the 3 months before biopsy, patients subjected to previous prostate biopsy, or patients being treated with dutasteride or finasteride were not included in the study, as these conditions might alter the concentration of p2PSA.

Methods

A blood sample was drawn to measure the prebiopsy tPSA, fPSA, and p2PSA levels, before performing prostate biopsy, and, within 3 hours of the blood draw, the samples were centrifuged. The samples were then frozen at −80°C and centrally processed using an Access 2 Immunoassay System, an automated random-access analyzer that performs immunoassays on body fluid samples (Beckman Coulter, Brea, CA). tPSA and fPSA were determined using the Hybritech calibration.

A preliminary transrectal ultrasonography was performed in each patient to determine prostate volume and visualize possible abnormalities within the gland. Prostate volume was calculated using the ellipsoid volume formula: Length • Height • Width • π/6. The same scheme of transrectal ultrasonography–guided prostate biopsies was used for all patients and consisted in a standardized institutional saturation scheme of 18-22 biopsy cores taken from the peripheral portion of the prostate gland (apex, midgland, and base), with additional cores taken when necessary according to prostate volume, patients’ age, and ultrasound visible abnormalities, to obtain the highest detection rate. Prostate biopsy specimens were placed in specific single-core specimen containers filled with 10% buffered formalin. All the specimens were analyzed by a single, experienced genitourinary pathologist.

CHPI was pathologically defined as moderate to large infiltration of lymphomononuclear cells with interstitial and/or glandular disruption in absence of PCa.

Outcomes

The primary outcome was to test the sensitivity, specificity, and accuracy of serum p2PSA, %p2PSA ([p2PSA pg/mL]/[fPSA ng/mL × 1000]) × 100, and Beckman Coulter PHI ([p2PSA/fPSA] × √fPSA), in discriminating CHPI from PCa, compared with the established biomarker reference standard tests (tPSA, fPSA, and %PSA), in patients with a PSA between 4 and 10 ng/mL and a negative DRE. Patients with CHPI were considered the cases, whereas patients with PCa or BPH were the controls.

The prospective reduction of unnecessary biopsies to discriminate between CHPI and PCa was reported as a secondary outcome.

Statistical Analysis

The Shapiro-Wilk test was used to assess the normality of variables. Owing to the skewness of variables distributions, the Kruskall-Wallis test followed by Dwass-Steel-Chritchlow-Fligner test for posthoc analysis was used for comparisons between groups. Correlations were checked by the Spearman’s rho coefficient analysis.

Multivariable logistic regression models were fit for the prediction of the presence of CHPI or PCa at biopsy, collinearity problems were corrected excluding predictors that strongly correlated with other explanatory variables. Hosmer-Lemeshow goodness-of-fit test was used to assess the goodness of logistic models (internal calibration). Odds ratios with 95% confidence intervals were also calculated. To reduce overfit bias, multivariable predictive accuracy tests were subjected to 200 bootstrap resamples.

Multivariable logistic regression models were complemented by predictive accuracy tests and decision curve analysis. Predictive accuracy was quantified as the area under the receiver operating characteristic curve (AUC). To test the ability of p2PSA, %p2PSA, and PHI to discriminate between CHPI and PCa at biopsy, these variables were added to the baseline multivariable model (including age, prostate volume, PSA, tPSA, and fPSA). The gain in predictive accuracy was quantified, and AUCs were compared using the DeLong method. Finally, decision curve analysis was also integrated in the statistical analysis.

All statistical analyses were performed using IBM SPSS v. 20.0 software (IBM Corp., Armonk, NY). A 2-sided P value <.05 was considered significant. MedCalc release 9.3.7.0 software (MedCalc Software, Mariakerke, Belgium) was used to plot receiver operating characteristic curves. Decision curves were plotted using a macro developed in Microsoft Excel (Microsoft, Redmond, WA) by one of the authors (V.B.).
Of 664 patients subjected to prostate biopsy, 267 had a PSA between 4 and 10 ng/mL and a negative DRE. In this subgroup, 73 of 267 (27.3%) patients were diagnosed with CHPI. Most frequently, CHPI was found to be associated with hyperplasia (90.4%), prostatic intraepithelial neoplasia (PIN) (6.8%), or atypical small acinar proliferation (ASAP) (1.4%). Conversely, BPH (without CHPI) and PCa were diagnosed in 93 (34.8%) and 31.0, a total of 34 of 174 (19.5%) biopsies could have been avoided, but 12 of 101 (11.9%) cancers would have been missed: 9 with Gleason score (GS) 6 (3+3) and 3 cancers with a GS of 7 (3+4). At a PHI cutoff of 31.0, a total of 34 of 174 (19.5%) biopsies could have been avoided, but 10 of 101 (9.9%) cancers would have been missed: 7 with GS 6 (3+3) and 3 cancers with a GS of 7 (3+4).

In multivariable logistic regression models, %p2PSA and PHI (low values) achieved the independent predictor status for CHPI, significantly increasing the accuracy of the
multivariable base model (consisting of patient age, prostate volume, tPSA, fPSA, and %fPSA) by 7.2% ($P = .027$) and 7.6% ($P = .026$) extent, respectively (Table 3). Figure 1C presents the decision curve analysis for the models shown in Table 3. Models including p2PSA, %p2PSA, and PHI (models 2, 3, and 4) showed the highest net benefit in discriminating between patients with and without PCa in a probability of pathologic outcome range (threshold probability) between 25% and 90%.

Finally, when comparing the CHPI with BPH subgroups, no significant differences were observed in PSA or p2PSA and derivatives (Table 1). Similarly, we found that all these markers did not have any predictive potential to discriminate CHPI from BPH (Fig. 1B).

Figure 1. (A, B) Receiver operating characteristic curves depicting the accuracy of individual predictors of chronic histologic prostatic inflammation vs prostate cancer (A) and vs benign prostatic hyperplasia (B) at initial extended biopsies. (C) Decision curve analysis of the effect of prediction models. Net benefit is plotted against various threshold probabilities. A threshold probability indicates the probability of chronic histologic prostatic inflammation at which one would choose to not perform a biopsy. Model 1 is a basic model including age, prostate volume, total prostate-specific antigen, free prostate-specific antigen, and percent fPSA. Model 2 is a basic model including all factors in model 1 plus p2PSA. Model 3 is a basic model including all factors in model 1 plus %p2PSA to fPSA. Model 4 is a basic model including all factors in model 1 plus the Prostate Health Index (PHI).
COMMENT

In this study, we demonstrated that low %p2PSA and PHI values might discriminate CHPI (cases) from PCa, but not CHPI from BPH, in patients with a serum PSA level between 4 and 10 ng/mL and a negative DRE.

Since its introduction in clinical practice, serum PSA testing showed a low specificity, as total PSA increase is possible in many clinical situations other than PCa, ranging from inflammation or BPH to a preneoplastic lesion such as HG-PIN. Prostatic inflammation is frequently diagnosed in biopsy, surgery, and autopsy histopathologic specimens. The reported inflammation rate was 44% in prostatic autopsy specimens, 44% for benign prostate biopsies, 95% in TURP specimens, and 100% in open prostatectomy specimens. Chronic prostatitis is thought to be one of the most common causes of increased serum PSA levels. Up to 10% of men suffer from the symptoms of prostatitis syndrome. However, the relationship between serum PSA levels and histologic prostatic inflammation is controversial. According to Simardi et al, the presence of inflammation in more than 20% of the prostate gland might be responsible for a significant increase of serum PSA levels. However, Irani et al did not find any correlation between intensity or grade of inflammation and PSA level in asymptomatic men. Thus, prescribing antibiotics for asymptomatic men with a newly increased PSA, suspect for PCa, might not be an appropriate method of management. In fact, Baltaci et al reported that antibiotics therapy will not decrease the risk of PCa at biopsy, even if the PSA decreases to <4 ng/mL.

Moreover, chronic prostatic inflammation might have an unclear role in carcinogenesis. Previous studies have found both positive and negative associations between inflammation and PCa.

Recent studies demonstrated that serum isoform p2PSA and its derivate PHI could be valid tools for discriminating between men with or without PCa and would aid in the avoidance of overdagnosis and overtreatment in patients with a tPSA between 2.0 and 10 ng/mL. Indeed, %p2PSA and PHI were shown to be the strongest predictors of PCa at initial and repeat extended biopsy, showing significantly greater accuracy than the currently used tests (tPSA, %fPSA, and PSA density) in determining the presence of PCa.

To our knowledge, there are no studies investigating the relationship between p2PSA (and derivatives) and CHPI. When we considered patients with CHPI as the cases, we demonstrated significantly lower levels of %p2PSA and PHI in CHPI compared with those measured in PCa patients, whereas no difference was observed between CHPI and BPH patients. This might be because of the fact that most of the CHPI diagnoses at biopsy specimen were also associated to BPH, showing no correlation between pathologic results (CHPI) and clinical information.

The main strength of our study appears to be the prospective evaluation of p2PSA and its derivatives. Furthermore, diagnostic procedures were strictly monitored and developed according reproducible methods. Nevertheless, this study might pose some limitations. First, patients were included in the original trial for their risk of PCa and not primarily for their history of chronic prostatitis. We also did not consider the relationship between pathologic results (CHPI) and clinical information collectable through self-administered questionnaires (ie Chronic Prostatitis Symptom Index). In addition, we did not assess the grade of inflammation at pathologic samples. However, it is noteworthy that Irani et al were unable to determine a relationship between

Table 2. Sensitivities, specificities, positive predictive value, and negative predictive value in predicting the presence of chronic histologic prostatic inflammation at initial biopsy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Criterion</th>
<th>Sensitivity (%)</th>
<th>95% CI</th>
<th>Specificity (%)</th>
<th>95% CI</th>
<th>PPV 95% CI</th>
<th>NPV 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>tPSA (ng/mL)</td>
<td>≥4.4</td>
<td>91.8</td>
<td>83.0-96.9</td>
<td>10.9</td>
<td>5.6-18.7</td>
<td>42.7</td>
<td>34.5-50.4</td>
</tr>
<tr>
<td>≥5.9</td>
<td>46.6</td>
<td>34.8-58.8</td>
<td>47.5</td>
<td>37.5-57.7</td>
<td>39.1</td>
<td>28.8-49.3</td>
<td>55.2</td>
</tr>
<tr>
<td>≥8.7</td>
<td>12.3</td>
<td>5.8-22.1</td>
<td>91.1</td>
<td>83.8-95.8</td>
<td>50.0</td>
<td>26.9-73.1</td>
<td>59.0</td>
</tr>
<tr>
<td>fPSA (ng/mL)</td>
<td>≥0.55</td>
<td>91.8</td>
<td>83.0-96.9</td>
<td>14.9</td>
<td>8.6-23.3</td>
<td>43.8</td>
<td>35.9-51.7</td>
</tr>
<tr>
<td>≥1.00</td>
<td>60.3</td>
<td>48.1-71.5</td>
<td>59.4</td>
<td>49.2-69.1</td>
<td>51.8</td>
<td>41.1-62.4</td>
<td>74.7</td>
</tr>
<tr>
<td>≥1.64</td>
<td>17.8</td>
<td>9.8-28.5</td>
<td>91.1</td>
<td>83.8-95.8</td>
<td>59.1</td>
<td>38.5-76.9</td>
<td>60.5</td>
</tr>
<tr>
<td>%fPSA</td>
<td>≥0.099</td>
<td>90.4</td>
<td>81.2-96.0</td>
<td>15.8</td>
<td>9.3-24.4</td>
<td>43.7</td>
<td>35.8-51.6</td>
</tr>
<tr>
<td>≥0.162</td>
<td>65.8</td>
<td>53.7-76.5</td>
<td>63.4</td>
<td>53.2-72.7</td>
<td>56.5</td>
<td>45.9-67.0</td>
<td>71.9</td>
</tr>
<tr>
<td>≥0.245</td>
<td>13.7</td>
<td>6.8-23.8</td>
<td>90.1</td>
<td>82.5-95.1</td>
<td>50.0</td>
<td>28.1-71.9</td>
<td>59.1</td>
</tr>
<tr>
<td>p2PSA (pg/mL)</td>
<td>≤26.0</td>
<td>90.4</td>
<td>81.2-96.0</td>
<td>21.8</td>
<td>14.2-31.1</td>
<td>45.5</td>
<td>37.4-53.6</td>
</tr>
<tr>
<td>≤16.4</td>
<td>52.1</td>
<td>40.0-63.9</td>
<td>53.5</td>
<td>43.3-63.5</td>
<td>44.7</td>
<td>34.1-55.3</td>
<td>60.7</td>
</tr>
<tr>
<td>≤9.5</td>
<td>15.1</td>
<td>7.8-25.4</td>
<td>90.1</td>
<td>82.5-95.1</td>
<td>52.4</td>
<td>31.0-73.7</td>
<td>59.5</td>
</tr>
<tr>
<td>%p2PSA</td>
<td>≤2.24</td>
<td>91.8</td>
<td>83.0-96.9</td>
<td>31.7</td>
<td>22.8-41.7</td>
<td>49.3</td>
<td>39.9-58.7</td>
</tr>
<tr>
<td>≤1.67</td>
<td>65.8</td>
<td>53.7-76.5</td>
<td>72.3</td>
<td>62.5-80.7</td>
<td>63.2</td>
<td>52.3-74.0</td>
<td>74.5</td>
</tr>
<tr>
<td>≤1.27</td>
<td>34.3</td>
<td>23.5-46.3</td>
<td>90.1</td>
<td>82.5-95.1</td>
<td>71.4</td>
<td>56.5-86.4</td>
<td>65.5</td>
</tr>
<tr>
<td>PHI</td>
<td>≤55.0</td>
<td>90.4</td>
<td>81.2-96.0</td>
<td>30.7</td>
<td>21.9-40.7</td>
<td>48.5</td>
<td>40.1-56.9</td>
</tr>
<tr>
<td>≤41.0</td>
<td>68.5</td>
<td>56.6-78.9</td>
<td>68.3</td>
<td>58.3-77.2</td>
<td>61.0</td>
<td>50.4-71.5</td>
<td>75.0</td>
</tr>
<tr>
<td>≤31.0</td>
<td>32.9</td>
<td>22.3-44.9</td>
<td>90.1</td>
<td>82.5-95.1</td>
<td>70.6</td>
<td>55.3-85.9</td>
<td>65.0</td>
</tr>
</tbody>
</table>

CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; tPSA, total PSA; other abbreviations as in Table 1.
Table 3. Bivariate and multivariate analyses predicting the probability of chronic histologic prostatic inflammation

<table>
<thead>
<tr>
<th>Predictors</th>
<th>AUC of Individual Predictor Variables (95% CI)</th>
<th>Bivariate Analysis OR (95% CI); P Value</th>
<th>Multivariate Analysis Base Model OR (95% CI); P Value</th>
<th>Base Model Plus p2PSA OR (95% CI); P Value</th>
<th>Base Model Plus %p2PSA OR (95% CI); P Value</th>
<th>Base Model Plus PHI OR (95% CI); P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.596 (0.519-0.670)</td>
<td>0.949 (0.911-0.990); (P = .014)</td>
<td>0.918 (0.871-0.966); (P = .001)</td>
<td>0.917 (0.872-0.964); (P = .001)</td>
<td>0.918 (0.873-0.965); (P = .001)</td>
<td></td>
</tr>
<tr>
<td>Prostate volume</td>
<td>0.701 (0.625-0.770)</td>
<td>1.025 (1.012-1.038); (P < .001)</td>
<td>1.027 (1.010-1.045); (P = .001)</td>
<td>1.027 (1.011-1.044); (P = .001)</td>
<td>1.027 (1.101-1.044); (P = .001)</td>
<td></td>
</tr>
<tr>
<td>Adenoma volume*</td>
<td>0.721 (0.646-0.788)</td>
<td>1.035 (1.018-1.052); (P < .001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>tPSA</td>
<td>0.497 (0.420-0.574)</td>
<td>1.006 (0.838-1.207); (P = .950)</td>
<td>1.291 (0.980-1.701); (P = .069)</td>
<td>0.905 (0.719-1.139); (P = .394)</td>
<td>1.060 (0.838-1.341); (P = .628)</td>
<td></td>
</tr>
<tr>
<td>fPSA†</td>
<td>0.618 (0.541-0.690)</td>
<td>2.147 (1.087-4.240); (P = .028)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>%fPSA†</td>
<td>0.630 (0.554-0.702)</td>
<td>1.870 (1.147-3.049); (P = .012)</td>
<td>4.117 (1.670-10.148); (P = .002)</td>
<td>1.023 (0.549-1.903); (P = .944)</td>
<td>1.002 (0.537-1.871); (P = .994)</td>
<td></td>
</tr>
<tr>
<td>p2PSA</td>
<td>0.565 (0.488-0.640)</td>
<td>0.962 (0.928-0.997); (P = .032)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>%p2PSA</td>
<td>0.726 (0.653-0.790)</td>
<td>0.300 (0.164-0.550); (P = .001)</td>
<td>0.321 (0.158-0.651); (P = .002)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PHI</td>
<td>0.734 (0.662-0.798)</td>
<td>0.949 (0.926-0.973); (P < .001)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

| AUC of multivariate models (95% CI) | 0.741 (0.668-0.806) | 0.800 (0.731-0.858) | 0.794 (0.725-0.853) | 0.798 (0.729-0.856) |
| Gain in predictive accuracy (95% CI) | – | 0.058 (0.004-0.113) | 0.053 (0.006-0.100) | 0.056 (0.007-0.106) |

AUC, area under the curve; OR, odds ratio; other abbreviations as in Tables 1 and 2.

The area under the curve reflects the predictive value of individual variables (columns) and of the multivariable models in predicting the probability of having chronic histologic prostatic inflammation.

* Not included in multivariate base model because the strong correlation with prostate volume (rho = 0.920).
† Not included in multivariate base model because the strong correlation with percentage of free PSA to total PSA (rho = 0.825) and [−2]proPSA (rho = 0.708).
‡ Expressed as fPSA/PSA × 10 to scaling OR in a more intelligible range.
§ \(P \leq .05 \) (relative to the multivariate base model; DeLong method).
intensity or grade of inflammation and PSA levels in asymptomatic men. Conversely, Nadler et al. demonstrated a significant PSA and p2PSA increase in patients with chronic prostatitis compared with controls. Moreover, we did not arrange the study population according to age, race, and family history information, potentially underestimating the models predictive accuracy. Finally, we consider only one PSA time point, and consequently it was not possible to investigate how levels of PSA and its isoforms change over time in patients with CHPI compared with those with PCa. This could be an interesting point for future investigations.

CONCLUSION
In this study, we demonstrated that p2PSA, %p2PSA, and PHI values might discriminate between CHPI and PCa, but not between CHPI and BPH, in patients with a total PSA of 4-10 ng/mL and a normal DRE. As tPSA failed to distinguish PCa, BPH, and CHPI, p2PSA isoform and its derivatives could be useful in clinical decision making to prevent unnecessary biopsies in patients with CHPI and elevated tPSA value. However, further investigations are needed to find a biomarker able to discriminate between the two benign conditions.

Acknowledgments. Beckman Coulter Inc. and Beckman Coulter Italy were involved in collection of data for this study. Access Hybritech p2PSA reagents were provided by Beckman Coulter Inc. and Beckman Coulter Italy; UniCel DxI800 Immunoassay System analyzer (Beckman Coulter Inc., Brea, CA) was provided by Beckman Coulter Italy.

References